Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Article En | MEDLINE | ID: mdl-36190515

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Hyperglycinemia, Nonketotic , Humans , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Proteins/genetics , Mutation , Exons/genetics , Glycine/genetics , Glycine/metabolism
2.
Am J Med Genet A ; 188(2): 600-605, 2022 02.
Article En | MEDLINE | ID: mdl-34652067

Dilated cardiomyopathy (DCM) is one of the most common cardiac phenotypes caused by mutations of lamin A/C (LMNA) gene in humans. In our study, a cohort of 57 patients who underwent heart transplant for dilated cardiomyopathy was screened for variants in LMNA. We identified a synonymous variant c.936G>A in the last nucleotide of exon 5 of LMNA in a DCM family. Clinically, the LMNA variant carriers presented with severe familial DCM, conduction disease, and high creatine-kinase level. The LMNA c.936G>A variant is novel and has not been reported in current genetic variant databases. Sanger sequencing results showed the presence of LMNA c.936G>A variant in the genomic DNA but not in the cDNA derived from one family member's heart tissue. Real-time quantitative polymerase chain reaction showed significantly lower LMNA mRNA levels in the patient's heart compared to the controls, suggesting that the c.936G>A LMNA variant resulted in reduced mRNA and possibly lower protein expression of LMNA. These findings expand the understanding on the association between synonymous variant of LMNA and the molecular pathogenesis in DCM patients.


Cardiomyopathy, Dilated , Lamin Type A , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Heterozygote , Humans , Lamin Type A/genetics , Mutation , Pedigree
3.
J Inherit Metab Dis ; 42(3): 424-437, 2019 05.
Article En | MEDLINE | ID: mdl-30873612

STUDY OBJECTIVE: A phase 1/2 clinical trial was performed in individuals with cystathionine ß synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment. METHODS: Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 µM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values. While maintaining current treatment, patients were treated with 75 mg/kg taurine twice daily, and treatment response assessed after 4 hours and 4 days. RESULTS: Fourteen patients (8-35 years; 8 males, 6 females) were enrolled with baseline homocysteine levels 161 ± 67 µM. The study found high-dose taurine to be safe when excluding preexisting hypertriglyceridemia. Taurine pharmacokinetics showed a rapid peak level returning to near normal levels at 12 hours, but had slow accumulation and elevated predosing levels after 4 days of treatment. Only a single parameter of oxidative stress, 2,3-dinor-8-isoprostaglandin-F2α, was elevated at baseline, with no elevated inflammatory parameters, and no change in FMD values overall. Taurine had no effect on any of these parameters. However, the effect of taurine was strongly related to pretreatment FMD values; and taurine significantly improved FMD in the subset of individuals with pretreatment FMD values <10% and in individuals with homocysteine levels >125 µM, pertinent to endothelial function. CONCLUSION: Taurine improves endothelial function in CBS-deficient homocystinuria in patients with preexisting reduced function.


Biomarkers/metabolism , Cystathionine beta-Synthase/metabolism , Homocystinuria/drug therapy , Taurine/pharmacokinetics , Taurine/therapeutic use , Adolescent , Adult , Brachial Artery/drug effects , Child , Cystathionine beta-Synthase/deficiency , Female , Homocysteine/metabolism , Homocystinuria/genetics , Humans , Inflammation/drug therapy , Male , Oxidative Stress/drug effects , United States , Young Adult
4.
Genet Med ; 20(12): 1489-1498, 2018 12.
Article En | MEDLINE | ID: mdl-30297698

Factor V Leiden and factor II c.*97G>A (formerly referred to as prothrombin 20210G>A) are the two most common genetic variants associated with venous thromboembolism (VTE). Testing for these variants is one of the most common referrals in clinical genetics laboratories. While the methodologies for testing these two variants are relatively straightforward, the clinical implementation can be complicated with regard to test indications, risk assessment of occurrence and recurrence of VTE, and related genetic counseling. This document provides an overview of VTE, information about the variants and their influence on risk, considerations before initiating genetic testing, and the clinical and analytical sensitivity and specificity of the tests. Key information that should be included in the laboratory report is also provided. Disease-specific statements are intended to augment the general American College of Medical Genetics and Genomics (ACMG) technical standards for clinical genetics laboratories. Individual laboratories are responsible for meeting the Clinical Laboratory Improvement Amendments (CLIA)/College of American Pathologists (CAP) quality assurance standards with respect to appropriate sample documentation, assay validation, general proficiency testing, and quality control measures. This 2018 edition of the ACMG technical standard updates and supersedes the 2005 edition on this topic. It is designed to be a checklist for genetic testing professionals who are already familiar with the disease and the methods of analysis.


Factor V/genetics , Genetic Testing/standards , Genetics, Medical , Venous Thromboembolism/diagnosis , Genetic Variation , Genomics , Humans , Laboratories/standards , Mutation , United States/epidemiology , Venous Thromboembolism/epidemiology , Venous Thromboembolism/genetics
6.
Am J Med Genet A ; 173(4): 1097-1101, 2017 Apr.
Article En | MEDLINE | ID: mdl-28181399

Pathogenic allelic variants in the fibroblast growth factor receptor 3 (FGFR3) gene have been associated with a number of phenotypes including achondroplasia, hypochondroplasia, thanatophoric dysplasia, Crouzon syndrome with acanthosis nigricans (Crouzonodermoskeletal syndrome), and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans). Crouzon syndrome with acanthosis nigricans is caused by the pathogenic variant c.1172C>A (p.Ala391Glu) in the FGFR3 gene. The p.Lys650Thr pathogenic variant in FGFR3 has been linked to acanthosis nigricans without significant craniofacial or skeletal abnormalities. Recently, an infant with achondroplasia and a novel p.Ser348Cys FGFR3 mutation was reported. We describe the clinical history of an 8-year-old child with a skeletal dysplasia in the achondroplasia-hypochondroplasia spectrum, acanthosis nigricans, typical development, and the recently described p.Ser348Cys FGFR3 mutation.


Acanthosis Nigricans/genetics , Achondroplasia/genetics , Bone and Bones/abnormalities , Dwarfism/genetics , Limb Deformities, Congenital/genetics , Lordosis/genetics , Point Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Acanthosis Nigricans/diagnosis , Acanthosis Nigricans/pathology , Achondroplasia/diagnosis , Achondroplasia/pathology , Bone and Bones/pathology , Child , DNA Mutational Analysis , Dwarfism/diagnosis , Dwarfism/pathology , Gene Expression , Humans , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/pathology , Lordosis/diagnosis , Lordosis/pathology , Male , Phenotype
7.
Hum Mol Genet ; 26(4): 702-716, 2017 02 15.
Article En | MEDLINE | ID: mdl-28040730

An infant presented with fatal infantile lactic acidosis and cardiomyopathy, and was found to have profoundly decreased activity of respiratory chain complex I in muscle, heart and liver. Exome sequencing revealed compound heterozygous mutations in NDUFB10, which encodes an accessory subunit located within the PD part of complex I. One mutation resulted in a premature stop codon and absent protein, while the second mutation replaced the highly conserved cysteine 107 with a serine residue. Protein expression of NDUFB10 was decreased in muscle and heart, and less so in the liver and fibroblasts, resulting in the perturbed assembly of the holoenzyme at the 830 kDa stage. NDUFB10 was identified together with three other complex I subunits as a substrate of the intermembrane space oxidoreductase CHCHD4 (also known as Mia40). We found that during its mitochondrial import and maturation NDUFB10 transiently interacts with CHCHD4 and acquires disulfide bonds. The mutation of cysteine residue 107 in NDUFB10 impaired oxidation and efficient mitochondrial accumulation of the protein and resulted in degradation of non-imported precursors. Our findings indicate that mutations in NDUFB10 are a novel cause of complex I deficiency associated with a late stage assembly defect and emphasize the role of intermembrane space proteins for the efficient assembly of complex I.


Acidosis, Lactic , Cardiomyopathies , Electron Transport Complex I/deficiency , Infant Nutrition Disorders , Mutation , NADH Dehydrogenase , Acidosis, Lactic/enzymology , Acidosis, Lactic/genetics , Cardiomyopathies/congenital , Cardiomyopathies/enzymology , Female , Humans , Infant Nutrition Disorders/enzymology , Infant Nutrition Disorders/genetics , Infant, Newborn , Male , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism
8.
J Pediatr ; 170: 234-9, 2016 Mar.
Article En | MEDLINE | ID: mdl-26749113

OBJECTIVE: To evaluate the impact of sodium benzoate and dextromethorphan treatment on patients with the attenuated form of nonketotic hyperglycinemia. STUDY DESIGN: Families were recruited with 2 siblings both affected with attenuated nonketotic hyperglycinemia. Genetic mutations were expressed to identify residual activity. The outcome on developmental progress and seizures was compared between the first child diagnosed and treated late with the second child diagnosed at birth and treated aggressively from the newborn period using dextromethorphan and benzoate at dosing sufficient to normalize plasma glycine levels. Both siblings were evaluated with similar standardized neurodevelopmental measures. RESULTS: In each sibling set, the second sibling treated from the neonatal period achieved earlier and more developmental milestones, and had a higher developmental quotient. In 3 of the 4 sibling pairs, the younger sibling had no seizures whereas the first child had a seizure disorder. The adaptive behavior subdomains of socialization and daily living skills improved more than motor skills and communication. CONCLUSIONS: Early treatment with dextromethorphan and sodium benzoate sufficient to normalize plasma glycine levels is effective at improving outcome if used in children with attenuated disease with mutations providing residual activity and when started from the neonatal period.


Child Development , Dextromethorphan/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Hyperglycinemia, Nonketotic/drug therapy , Siblings , Sodium Benzoate/therapeutic use , Time-to-Treatment , Child , Child, Preschool , Colorado , Delayed Diagnosis , Early Diagnosis , Epilepsy/etiology , Female , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/genetics , Infant , Infant, Newborn , Intelligence Tests , Male , Neuropsychological Tests
9.
Ann Neurol ; 78(4): 606-18, 2015 Oct.
Article En | MEDLINE | ID: mdl-26179960

OBJECTIVE: Nonketotic hyperglycinemia is a neurometabolic disorder characterized by intellectual disability, seizures, and spasticity. Patients with attenuated nonketotic hyperglycinemia make variable developmental progress. Predictive factors have not been systematically assessed. METHODS: We reviewed 124 patients stratified by developmental outcome for biochemical and molecular predictive factors. Missense mutations were expressed to quantify residual activity using a new assay. RESULTS: Patients with severe nonketotic hyperglycinemia required multiple anticonvulsants, whereas patients with developmental quotient (DQ) > 30 did not require anticonvulsants. Brain malformations occurred mainly in patients with severe nonketotic hyperglycinemia (71%) but rarely in patients with attenuated nonketotic hyperglycinemia (7.5%). Neonatal presentation did not correlate with outcome, but age at onset ≥ 4 months was associated with attenuated nonketotic hyperglycinemia. Cerebrospinal fluid (CSF) glycine levels and CSF:plasma glycine ratio correlated inversely with DQ; CSF glycine > 230 µM indicated severe outcome and CSF:plasma glycine ratio ≤ 0.08 predicted attenuated outcome. The glycine index correlated strongly with outcome. Molecular analysis identified 99% of mutant alleles, including 96 novel mutations. Mutations near the active cleft of the P-protein maintained stable protein levels. Presence of 1 mutation with residual activity was necessary but not sufficient for attenuated outcome; 2 such mutations conferred best outcome. Divergent outcomes for the same genotype indicate a contribution of other genetic or nongenetic factors. INTERPRETATION: Accurate prediction of outcome is possible in most patients. A combination of 4 factors available neonatally predicted 78% of severe and 49% of attenuated patients, and a score based on mutation severity predicted outcome with 70% sensitivity and 97% specificity.


Glycine/genetics , Glycine/metabolism , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/metabolism , Mutation, Missense/genetics , Animals , COS Cells , Chlorocebus aethiops , Female , Glycine/chemistry , Humans , Hyperglycinemia, Nonketotic/diagnosis , Infant , Infant, Newborn , Male , Predictive Value of Tests , Prognosis , Protein Structure, Secondary
10.
Genet Med ; 15(7): 575-86, 2013 Jul.
Article En | MEDLINE | ID: mdl-23765048

Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Mutations in the FMR1 gene are associated with fragile X syndrome, fragile X tremor ataxia syndrome, and premature ovarian insufficiency. This document provides updated information regarding FMR1 gene mutations, including prevalence, genotype-phenotype correlation, and mutation nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction amplification of the FMR1 gene, including triplet repeat-primed and methylation-specific polymerase chain reaction. In addition to report elements, examples of laboratory reports for various genotypes are also included.


Fragile X Syndrome/genetics , Genetic Testing , Blotting, Southern , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/etiology , Genetic Association Studies , Genetics, Medical , Humans , Mutation , Polymerase Chain Reaction , Pregnancy , Prenatal Diagnosis
11.
JIMD Rep ; 11: 149-63, 2013.
Article En | MEDLINE | ID: mdl-23733603

We describe a family illustrating the diagnostic difficulties occurring when pyridoxine-responsive cystathionine beta-synthase (CBS) deficiency presents with thrombotic disease without associated ocular, skeletal, or CNS abnormalities, a situation increasingly recognized. This family had several thromboembolic episodes in two generations with apparently inconstant elevations of plasma total homocysteine (tHcy). When taking (sometimes even low amounts) of pyridoxine, the affected family members had low-normal tHcy and normal values for cystathionine, methionine, and cysteine. Withdrawal of vitamin therapy was necessary before lower cystathionine, elevated methionine, and decreased cysteine became apparent, a pattern suggestive of CBS deficiency, leading to the finding that the affected members were each compound heterozygotes for CBS p.G307S and p.P49L. To assist more accurate diagnosis of adults presenting with thrombophilia found to have elevated tHcy, the patterns of methionine-related metabolites in CBS-deficient patients are compared in this article to those in patients with homocysteine remethylation defects, including inborn errors of folate or cobalamin metabolism, and untreated severe cobalamin or folate deficiency. Usually serum cystathionine is low in subjects with CBS deficiency and elevated in those with remethylation defects. S-Adenosylmethionine and S-adenosylhomocysteine are often markedly elevated in CBS deficiency when tHcy is above 100 umol/L. We conclude that there are likely other undiagnosed, highly B6-responsive adult patients with CBS deficiency, and that additional testing of cystathionine, total cysteine, methionine, and S-adenosylmethionine will be helpful in diagnosing them correctly and distinguishing CBS deficiency from remethylation defects.

12.
J Child Neurol ; 25(8): 954-60, 2010 Aug.
Article En | MEDLINE | ID: mdl-20023066

We report 4 children with late-onset (type III) multiple acyl-CoA dehydrogenase deficiency, also known as glutaric aciduria type II, which is an autosomal recessive disorder of fatty acid and amino acid metabolism. The underlying deficiency is in the electron transfer flavoprotein or electron flavoprotein dehydrogenase. Clinical presentations include fatal acute neonatal metabolic encephalopathies with/without organ system anomalies (types I and II) and late-onset acute metabolic crises, myopathy, or neurodevelopmental delays (type III). Two patients were identified in childhood following a metabolic crisis and/or neurodevelopmental delay, and 2 were identified by newborn metabolic screening. Our cases will illustrate the difficulty in making a biochemical diagnosis of late-onset (type III) multiple acyl-CoA dehydrogenase deficiency from plasma acylcarnitines and urine organic acids in both symptomatic and asymptomatic children. However, they emphasize the need for timely diagnosis to urgently implement prophylactic treatment for life-threatening metabolic crises with low protein/fat diets supplemented with riboflavin and carnitine.


Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/physiopathology , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/physiopathology , Brain Diseases, Metabolic/therapy , Carnitine/analogs & derivatives , Carnitine/analysis , Carnitine/blood , Child , Child, Preschool , Developmental Disabilities/diagnosis , Developmental Disabilities/physiopathology , Developmental Disabilities/therapy , Female , Humans , Male , Mass Screening , Metabolic Diseases/diagnosis , Metabolic Diseases/physiopathology , Metabolic Diseases/therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/therapy
14.
Genet Med ; 10(1): 57-72, 2008 Jan.
Article En | MEDLINE | ID: mdl-18197058

DISCLAIMER: These Technical Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular standard or guidelines was adopted, and to consider other relevant medical and scientific information that becomes available after that date.


Genetic Carrier Screening/methods , Genetic Testing/standards , Jews/genetics , Humans
15.
Arch Dermatol ; 143(9): 1153-6, 2007 Sep.
Article En | MEDLINE | ID: mdl-17875876

BACKGROUND: Acanthosis nigricans is a feature of several syndromes caused by activating mutations of the fibroblast growth factor receptor 3 gene (FGFR3), including Crouzon syndrome with acanthosis nigricans, thanatophoric dysplasia, and severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN syndrome). OBSERVATIONS: We describe a healthy 4-year-old African American girl with generalized acanthosis nigricans since infancy. Her father had a history of acanthosis nigricans since childhood, in addition to Crohn disease, obesity, and adult-onset diabetes mellitus. A pedigree with numerous affected family members was constructed. Other than slightly short stature, no associated anomalies were found, including dysmorphic features or skeletal or neurologic defects. Genetic testing revealed a previously undescribed, heterozygous lysine to threonine mutation at codon 650 of the FGFR3 gene in the 4 affected family members who were tested. CONCLUSION: Extensive acanthosis nigricans in early childhood, especially with a family history of acanthosis nigricans, may warrant testing for FGFR3 mutations.


Acanthosis Nigricans/genetics , Point Mutation , Receptor, Fibroblast Growth Factor, Type 3/genetics , Acanthosis Nigricans/pathology , Adult , Black People , Child , Child, Preschool , Female , Humans , Pedigree
16.
Genet Med ; 9(7): 413-26, 2007 Jul.
Article En | MEDLINE | ID: mdl-17666888

PURPOSE: The aim of the study was to determine the actual GJB2 and GJB6 mutation frequencies in North America after several years of generalized testing for autosomal recessive nonsyndromic sensorineural hearing loss to help guide diagnostic testing algorithms, especially in light of molecular diagnostic follow-up to universal newborn hearing screening. METHODS: Mutation types, frequencies, ethnic distributions, and genotype-phenotype correlations for GJB2 and GJB6 were assessed in a very large North American cohort. RESULTS: GJB2 variants were identified in 1796 (24.3%) of the 7401 individuals examined, with 399 (5.4%) homozygous and 429 (5.8%) compound heterozygous. GJB6 deletion testing was performed in 12.0% (888/7401) of all cases. The >300-kb deletion was identified in only nine individuals (1.0%), all of whom were compound heterozygous for mutations in GJB2 and GJB6. Among a total of 139 GJB2 variants identified, 53 (38.1%) were previously unreported, presumably representing novel pathogenic or benign variants. CONCLUSIONS: The frequency and distribution of sequence changes in GJB2 and GJB6 in North America differ from those previously reported, suggesting a considerable role for loci other than GJB2 and GJB6 in the etiology of autosomal recessive nonsyndromic sensorineural hearing loss, with minimal prevalence of the GJB6 deletion.


Connexins/genetics , Gene Frequency , Genetic Diseases, Inborn/genetics , Hearing Loss/genetics , Mutation , Canada , Connexin 26 , Connexin 30 , Female , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/ethnology , Hearing Loss/diagnosis , Hearing Loss/ethnology , Heterozygote , Homozygote , Humans , Infant, Newborn , Longitudinal Studies , Male , Quantitative Trait Loci , United States
17.
Clin Chem ; 51(11): 2013-24, 2005 Nov.
Article En | MEDLINE | ID: mdl-16166172

BACKGROUND: Positive control materials for clinical diagnostic molecular genetic testing are in critically short supply. High-quality DNA that closely resembles DNA isolated from patient specimens can be obtained from Epstein-Barr virus (EBV)-transformed peripheral blood lymphocyte cell lines. Here we report the development of a process to (a) recover residual blood samples with clinically important mutations detected during routine medical care, (b) select samples likely to provide viable lymphocytes for EBV transformation, (c) establish stable cell lines and confirm the reported mutation(s), and (d) validate the cell lines for use as positive controls in clinical molecular genetic testing applications. METHODS: A network of 32 genetic testing laboratories was established to obtain anonymous, residual clinical samples for transformation and to validate resulting cell lines for use as positive controls. Three panel meetings with experts in molecular genetic testing were held to evaluate results and formulate a process that could function in the context of current common practices in molecular diagnostic testing. RESULTS: Thirteen laboratories submitted a total of 113 residual clinical blood samples with mutations for 14 genetic disorders. Forty-one EBV-transformed cell lines were established. Thirty-five individual point and deletion mutations were shown to be stable after 20 population doublings in culture. Thirty-three cell lines were characterized for specific mutations and validated for use as positive controls in clinical diagnostic applications. CONCLUSIONS: A process for producing and validating positive control cell lines from residual clinical blood samples has been developed. Sustainable implementation of the process could help alleviate the current shortage of positive control materials.


Blood Specimen Collection , Cell Line, Transformed , Genetic Testing/methods , Herpesvirus 4, Human , Lymphocytes/cytology , Genetic Diseases, Inborn/diagnosis , Humans , Laboratories , Molecular Biology , Mutation , Point Mutation , Sequence Deletion
18.
Genet Med ; 7(6): 444-53, 2005.
Article En | MEDLINE | ID: mdl-16024978

These standards and guidelines are designed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to this statement does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical molecular geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the laboratory record the rationale for any significant deviation from these standards and guidelines.


Factor V/genetics , Genetic Testing/standards , Laboratories/standards , Prothrombin/genetics , Quality Assurance, Health Care , Thromboembolism/diagnosis , Genetic Predisposition to Disease , Genetic Services , Humans , Thromboembolism/genetics
19.
Genet Med ; 6(1): 61-5, 2004.
Article En | MEDLINE | ID: mdl-14726813

One mission of the ACMG Laboratory Quality Assurance (QA) Committee is to develop standards and guidelines for clinical genetics laboratories, including cytogenetics, biochemical, and molecular genetics specialties. This document was developed under the auspices of the Molecular Subcommittee of the Laboratory QA Committee by the Huntington Disease (HD) Working Group. These guidelines are not to be interpreted as restrictive or the only approach but to provide a helpful guide. Certainly, appropriately trained and credentialed laboratory directors have flexibility to utilize various testing platforms and design testing strategies with considerable latitude. We felt that it was essential to include technique-specific guidelines of several current technologies commonly used in laboratories providing HD testing, because the technologies discussed are available commercially and are widely utilized. We take the view that these technologies may change, and thus this document may change with future review.


Genetic Testing/standards , Guidelines as Topic , Huntington Disease/diagnosis , Huntington Disease/genetics , Laboratories/standards , Quality Assurance, Health Care , Credentialing , Humans
...